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Abstract: Portfolio selection based on the global minimum variance (GMV) model remains a significant focus in financial 
research. The covariance matrix, central to the GMV model, determines portfolio weights, and its accurate estimation is 
key to effective strategies. Based on the decomposition form of the covariance matrix. This paper introduces semi-variance 
for improved financial asymmetric risk measurement; addresses asymmetry in financial asset correlations using distance, 
asymmetric, and Chatterjee correlations to refine covariance matrices; and proposes three new covariance matrix models 
to enhance risk assessment and portfolio selection strategies. Testing with data from 30 stocks across various sectors of the 
Chinese market confirms the strong performance of the proposed strategies.
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1. Introduction
The GMV model is a portfolio selection framework designed to achieve the lowest variance through optimized 
asset allocation. Unlike the classical mean-variance model, GMV focuses solely on minimizing risk rather than 
prioritizing future profitability [1]. This makes it widely applicable to portfolio selection problems, as seen in 
studies by many researchers [2, 3]. In the GMV model, the optimal portfolio weights depend exclusively on the 
covariance matrix of risky assets.  The covariance matrix can be decomposed into variance and correlation, 
represented as the product of a diagonal variance matrix and a correlation coefficient matrix. Variance quantifies 
the risk of individual assets, while the correlation coefficient captures relationships between assets,  facilitating 
effective risk diversification. Nonetheless, both variance and correlation coefficients have limitations in portfolio 
selection [4].

In assessing portfolio risk, researchers have found that semi-variance offers a more accurate measure of 
asymmetric risk. According to Mao, traditional methods treat positive and negative deviations equally, which does 
not align with actual investor psychology [5]. To address this, Artzner et al. emphasized the importance of focusing 



306 Volume 8; Issue 4

on adverse changes in returns, termed downside risk [6]. Wu et al. investigated dynamic mean-downside risk 
portfolio optimization under random interest rate changes in a continuous-time framework [7]. Rutkowska-Ziarko 
and Kliber used semi-variance to quantify downside risk, capturing investors’ risk preferences more accurately [8]. 
Their findings revealed that investors exhibit decreasing risk aversion when ranking assets, showing a readiness to 
accept higher risks for greater rewards.

Asymmetric correlation plays a crucial role in portfolio selection, garnering significant attention in asset 
correlation analysis [9]. Longin and Solnik revealed that extreme market conditions increase correlations across 
international stock markets [10]. Ang and Chen found that correlations between assets intensify during market 
downturns, highlighting essential risk characteristics of investment portfolios [11]. Hong et al. introduced a model-
free testing approach for analyzing asymmetric correlations in size and momentum portfolios, offering empirical 
support [12]. Meanwhile, Chuang et al. developed a nonparametric method to explore asymmetric co-movement 
in financial markets, finding significant evidence of such behavior in stocks and market indices [13]. These studies 
provide valuable theoretical insights, enabling investors to better understand and manage portfolio risk.

As researchers delve deeper into asset correlations, they have identified non-linear characteristics among 
financial assets. Distance correlation, introduced by Székely et al., effectively captures these non-linear 
relationships, outperforming traditional Pearson correlation in risk characterization [14]. Extensions like Zhou’s 
auto-distance correlation function (ADCF) and Székely et al. high-dimensional independence testing have 
enhanced its applicability [15, 16]. Meanwhile, Dueck et al. studied the problem of computing the distance correlation 
coefficient between Lancaster distribution class random vectors and derived a general series representation of 
the distance covariance of these distributions, enriching the theoretical foundation of distance correlation [17]. 
Applications in portfolio risk-return measurement further demonstrate its versatility and theoretical significance [18].

In this paper, three portfolio selection strategies within the GMV model is proposed, based on the variance-
correlation decomposition of the covariance matrix while addressing asymmetry in both time and individual 
dimensions of financial risk assets. The key steps include: (i) replacing variance with semi-variance to account 
for investors’ focus on downside risk; (ii) measuring correlations using distance, asymmetric, and Chatterjee 
correlations to capture time and individual asymmetries; (iii) constructing three novel covariance matrices and 
corresponding portfolio selection strategies to enhance effectiveness.

2. Preliminary works
In this section, some of the key preparatory works will be discussed in five aspects: the global minimum variance 
model, semi-variance, asymmetric correlation, distance correlation, and Chatterjee correlation.

2.1. Global minimum variance model
Given p risky assets, let Rt = (r1t,r2t,...,rpt)  denote the p×1 vector of asset returns at time t where t(t=1,2,...,n) 
denotes time, n is the sample size, and (·)T indicates the transpose operation. The traditional GMV model is 
expressed as,

	 (1)

where ω is a p×1 weight vector, ∑ = Cov(Rt) is a p×p covariance matrix, and 1 is a p×1 vector of ones. The 
optimal portfolio weight for Equation (1) can be obtained as follows:
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But the true covariance matrix Σ is unknown, and the sample covariance matrix  is used to replace Σ , that is

	 (2)

Where .

The covariance matrix can be decomposed into a variance-correlation form, which is the product of the 
diagonal matrix of variance and the correlation coefficients matrix. Variance measures risk and correlation 
coefficients measures the correlation of different financial assets. However, there are some shortcomings in using 
the traditional GMV model to deal with portfolio selection problems: 

(1) Variance is a traditional risk measurement method. Although it has been widely used in many portfolio 
selection problems, it also has some practical limitations, such as considering any value above the mean 
as asset risk. Then semi-variance is presented to measure variance of portfolio reasonably. 

(2) The eigenvalues of the sample covariance matrix do not match the eigenvalues of the true covariance 
matrix. The estimation error in the sample covariance matrix remains unresolved, and this error can lead 
to ineffective decisions in portfolio optimization and risk management. In the following sections, semi-
variance, asymmetric correlation, distance correlation, and Chaterjee’s correlation will be introducedone 
by one.

2.2. Semi-variance
Semi-variance does have significant value as a tool for assessing a portfolio’s potential downside risk. Markovitz 
proposed and extended the application of semi-variance, respectively [1]. In recent years, many scholars have 
further studied and applied semi-variance. Huang assumes that ζ is a fuzzy variable with a finite expected value e, 
then the semi-variance S(ζ) of ζ is defined as follows [19]:

Where

Considering the above definition of semi-variance, the sample semi-variance can be further defined as:

where  is the i-th value in the sample data set, rit is the return value, B is the expected value of the 
sample data set, n is the number of non-zero terms.

2.3. Asymmetric correlation
By considering asymmetric correlation, investors, risk managers, and policymakers can better assess and manage 
market risks, develop more effective investment strategies, and create regulatory policies that contribute to greater 
stability and security across various market environments.
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Suppose the two risky assets of return in period t are {r1t,r2t}. Consider the extreme case of the two variables 
exceeding the correlation (i.e. exceeding a certain critical value of c standard deviations). The correlation exceeds 
the level  is defined as the correlation between the two variables when they exceed  standard deviations of their 
means, respectively:

where c≥0 is a given level, ρ+(c) measures the correlation between two returns above a certain exceeding level 
c, ρ–(c) measures the correlation between two returns below a certain exceeding level .

2.4. Distance correlation
Distance correlation is a statistic that measures the dependence between two random variables or data sets. It does 
not require the assumption of a linear relationship or distribution form between the variables. Unlike the traditional 
Pearson correlation coefficient, distance correlation can capture nonlinear relationships and is insensitive to 
changes in marginal distributions. Székely and Rizzo defined the distance-dependent statistic as follows [16]. 

Given an observed random sample  from the joint distribution of random 
vectors  and , the following is redefined:

where i,j =1,...,n. Similarly, it is define:

for i,j =1,...,n. The empirical distance covariance Vn(U,V) is the nonnegative number defined by:

Similarly, Vn(U) is the nonnegative number defined by:

The empirical distance correlation Rn(U,V) is the square root of

2.5. Chatterjee correlation
The Chatterjee correlation can better measure the individual asymmetry of correlation between financial risk 
assets. In recent years, Chatterjee introduced a new correlation coefficient calculation method, which mainly 
studies the correlation between individual assets [20]. Let (X,Y) be a pair of random variables where Y is not a 
constant. Let (X1,Y2),...,(Xn,Yn) be iid pairs with the same law as (X,Y), where n≥2. Assume that Xi and Yi have no 
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relationship, and rearrange the data. Since Xi has no relationship, there is a unique way of doing this. Let τi be the 
rank of Yi, that is, the number of j such that Yj≤Yi. The new correlation coefficient is defined as

	 (3)

in the constrained case, ξn is defined as follows. If there are relationship among the Xi , then the incremental 
rearrangement as described above is chosen by breaking the relationship uniformly at random. Let τi be the same 
as before, and additionally define li to be the number of j such that Yj≥Yi. Then define

	 (4)

 when there is no relationship among , is just a permutation of 1,...,n, so the denominator in the 
above expression is just , which simplifies this definition to the Equation (3). Subsequently, several 
authors, through theoretical derivations and numerical simulations, demonstrated the advantages of Chatterjee’s 
correlation coefficient over other commonly used measures of correlation, such as the Pearson correlation 
coefficient, under various statistical models [21]. This evidence shows that Chatterjee’s correlation coefficient not 
only possesses theoretical optimality but also enhances performance in practical applications, particularly in high-
dimensional data or settings involving complex dependencies.

3. New strategy for portfolio selection
Considering that the correlation between financial risk assets exhibits asym- metry in both time and individual 
dimensions, this section introduces new for- mulations to constructing the covariance matrix, which is then 
applied to derive more effective portfolio selection strategies. Three novel strategies is proposed using different 
combinations of correlation measurement tools: 

(1) Shrinking the inverse covariance matrix to the product of inverse asymmetric correlation and inverse 
Chatterjee correlation (STICV-TVI). 

(2) shrinking the inverse covariance matrix by combining the inverse asymmetric correlation with the inverse 
Chatterjee correlation (STICV(TV∪I)).  

(3) Shrinking the inverse covariance matrix to a combination of the product of inverse asymmetric and 
Chatterjee correlations, plus the inverse covariance matrices of asymmetric and Chatterjee correlations 
(STICV(TV∪I∪TVI)).

3.1. Constructing the STICV-TVI
3.1.1. Step1: Construct covariance matrix
It is well established that the covariance matrix can be expressed in its variance correlation decomposition 
form, such that , where  represents the semi-variance matrix, specifically 

 and  signifies the distance correlation matrix, specifically , where  is the 
distance correlation between rit and rjt.   

By leveraging the advantages of semi-variance and asymmetric correlation, replace the traditional variance 
and Pearson correlation matrix with the semi-variance matrix and the asymmetric correlation matrix, respectively. 
Consequently, the covariance matrix is expressed as , where  represents the asymmetric 



310 Volume 8; Issue 4

correlation matrix, specifically , where  and is computed based on this symmetric correlation. 
(iii) The individual correlation matrix is used as a replacement for the Pearson correlation matrix. Therefore, 
the covariance matrix can be defined as , where  represents the individual correlation 
matrix, specifically , where , each element Cij is defined based on the dependency relationship 
between the corresponding variables according to Chatterjee, and the matrix is asymmetric. 

For the convenience of parameter selection, an unknown parameter α needs to be introduced, so the following 
inverse sample covariance matrix can be built.

	 (5)

3.1.2. Step 2: Calculation of portfolio weights
Next, solve for the weights of the model using the equation below:

	 (6a)

Let us reintroduce an unknown coefficient β and let . Through Equation (2) the equation below 
is obtained.

	 (6)

From Equation (6), it is known that, to determine the optimal portfolio weights, calculate the  coefficient.

3.1.3. Step 3: Selection of the shrinkage coefficients. 
Using the variance minimization method to select the shrinkage coefficient β, the objective function can be 

derived as

	 (7)

Simplify Equation (7), take its derivative with respect to  and set it equal to 0, and then, find the solution as 
shown in Equation (8).

	 (8)

3.2. Constructing the STICV(TV ∪ I)
The new model is constructed according to the following steps.

(1) Step 1: Construct the covariance matrix
Similar to step 1 in Section 3.1, for the convenience of parameter selection, introduce two unknown 

parameters  , so the following model can be built

	 (9)

(2) Step 2: Calculation of portfolio weights
Next, solve for the weights of the model, to get:

	 (9a)



311 Volume 8; Issue 4

Let us reintroduce two unknown parameters φ 1, φ2 and let , . So, 
. Through Equation (2), the below is obtained:

	 (10)

From Equation (10), it is know that it needs to find the generalized inverse weights of the three conditional 
covariances separately, namely ,  and .

(3) Step 3: Selection of the shrinkage coefficients
Similarly to 3.1, use minimum variance method to select the shrinkage coefficients, and the objective function 

is as follows:

	 (11)

Simplify (11) first, then take the derivative of φ 1 and φ2 and set it equal to 0, and the result is as follow

	 (12)

Where 
φ = (φ1   φ2 )T ,

where A,B,C are defined as follows

3.3. Constructing the STICV(TV ∪ I ∪ TVI)
3.3.1. Step 1: Construct covariance matrix 
Similar to step 1 in section 3.1., for the convenience of parameter selection, three unknown parameters α1, α2, α3 
needs to be introduced, so the following model can be built:

	 (13)

3.3.2. Step 2: Calculation of portfolio weights  
Next, solve for the weights of the model, to get:
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Reintroduce three unknown parameters β1, β2, β3 and let , , . So 
. Next, simplify to get

		  (14)

From Equation (14), it is known that it needs to find the generalized inverse weights of the three conditional 
covariances separately, namely ,  and . 

3.3.3. Step 3: Selection of the shrinkage coefficients
Similar to step 3 in section 3.1, the objective function is as follows:

	 (15)

Simplify Equation 15, first, then take the derivative of β1, β2, and β3 and set it equal to 0, and the result is as
β = Q-1m,

where
β = (β1 ,  β2 ,  β3 )T ,

where  are defined as follows
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4. Data and methodology
4.1. Data
In the empirical analysis, the stock data employed comes from the Chinese stock market, to calculate its 
logarithmic return based on its closing price. For stock details, please see the Table 1.

Table 1. The data for  30 stocks are from the Chinese stock market from October 1, 2018 to March 18, 2020

Code Code Code Code Code

000568.SZ 002493.SZ 600276.SH 601012.SH 601933.SH

000651.SZ 300750.SZ 600346.SH 601288.SH 601939.SH

000708.SZ 300760.SZ 600438.SH 601318.SH 603259.SH

002024.SZ 600019.SH 600519.SH 601601.SH 603816.SH

000858.SZ 600028.SH 600690.SH 601628.SH 603833.SH

002304.SZ 600036.SH 600809.SH 601857.SH 603899.SH

4.1.1. Verify the asymmetry of correlation between individual stock returns
Section 2.3 mentioned the importance of asymmetric correlation in financial markets.  To test the asymmetric 
correlation of the Chinese stock market dataset, the model-free test approach is used, formalizing the null 
hypothesis (H0: ρ+ (c) = ρ - (c)   for all c ≥ 0) and alternative hypothesis (HA: ρ+ (c)  ρ - (c)   for some c ≥ 0) of 
Hong et al. [12].  The significance level of the hypothesis test is 0.05, and c is a given level (c = 0 in this paper). So 
the statistic for testing the null hypothesis is defined as follows:

Where

where T is the size of sample, and I is the indicator function,  is a matrix with -th element, and  is a 
kernel function that assigns a suitable weight to each lag of order l, p is the smoothing parameter or lag truncation 
order. In this paper, the Bartlett kernel is used.
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Table 2. The partial P-value of stock pair

Stock pair P-value Stock pair P-value

(000858.SZ, 002493.SZ) 5.20E-03 (002304.SZ, 002493.SZ) 1.34E-04

(600438.SH, 600519.SH) 4.15E-02 (601939.SH, 603259.SH) 5.06E-04

(603259.SH, 000568.SZ) 9.40E-03 (601857.SH, 603259.SH) 6.20E-04

(002493.SZ, 601012.SH) 3.21E-02 (002493.SZ, 002024.SZ) 7.66E-05

(601012.SH, 603259.SH) 1.40E-03 (603259.SH, 601318.SH) 3.86E-04

Table 2 presents the partial P-values of the stock pairs under analysis. Setting the significance level for the 
hypothesis test at 0.05, the analysis of the data in Table 2 reveals that the calculated P-values are significance 
lower than the set threshold. This finding provides robust evidence to support the rejection of the null hypothesis, 
thus favoring the acceptance of the alternative hypothesis. Consequently, it can be inferred that there is sufficient 
evidence to demonstrate the existence of asymmetric correlation between pairs of stocks.

4.1.2. Verify the Chatterjee correlation between individual stock returns
The  returns of eight stocks (Table 3) is used to verify the Chatterjee correlation. Table 4 presents the partial  of 
the stock pairs under analysis. Due to Moutai’s market leadership and brand in influence in the alcohol industry, 
take Kweichow Moutai’s stock code (600519.SH) as an example of the leading stocks compared to Shanxi Fenjiu 
(600809.SH). It is found that within the same industry, 600519.SH’s in influence on 600809.SH is greater than 
600809. SH’s in influence on 600519.SH, and the situation is similar in other industries, such as Sinopec Corp. 
(600028.SH) and Hengli Petrochemical (600346.SH). There exists asymmetry of correlation between stocks, and 
that Chatterjee correlation can effectively measure the asymmetry of correlation between stocks individuals.

Table 3. Select eight of these stocks to verify Chatterjee Correlation

Code English abbreviation

600809.SZ
600519.SH
600346.SH
600028.SH

Shanxi Xinghuacun Fen Wine Factry Co Ltd Kweichow Moutai Co. Ltd
Hengli Petrochemical Co Ltd

China Petroleum Chemical Corp (Sinopec Corp.)

Table 4. The partial ξn (X, Y) of stock pair

Code 600809.SH 600519.SH       Code 600028.SH 600346.SH

600809.SH 0.9925          0.0482       600028.SH 0.9925 0.0437

600519.SH 0.1124          0.9925       600346.SH -0.0214 0.9925

4.2. Portfolio selection strategies
Analyze the proposed portfolio strategy by comparing it with several established strategies documented in the 
literature (Table 5). The strategies LW(id) and LW(lf) are derived from the research of Ledoit, Wolf [22, 23]. The 
ICVARI, ICVARF, and ICVARIF strategies are based on the work of Kourtis et al. [24].
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Table 5. List of portfolio selection strategies

Abbreviation                                                 Expression

Panel A: The benchmark optimization model for this portfolio selection

ICVARF
ICVARIF ICVARI   LW(lf)
LW(id)    AST·ASI ASI
NAIVE GMV

-1

Panel B: The new optimization model

STICV-TVI
STICV(TV ∪ I)
STICV(TV ∪ I ∪ TVI)

4.3. Performance evaluation metric
To evaluate out-of-sample portfolio performance, the rolling window technique is employed. Specifically, the 
portfolio weight  for each strategy k was estimated using the daily returns from t-h to t-1, where h represents the 
window length. Subsequently, the corresponding out-of-sample portfolio returns at time t+1 were calculated as 

, producing a time series of excess returns for each portfolio strategy. Here,  denotes the 
asset returns at time t+1. The sample mean  and standard deviation  of the excess returns were then computed, 
followed by the calculation of the out-of-sample performance metrics as outlined in Table 6.

Table 6. Partial results for out-of-sample Mean

Name Expression

Mean

Sharpe ratio

5. Empirical results
In this study, 30 stocks from the Chinese stock market is examined. To create datasets of varying dimensions, 
5, 10, 15, and 20 stocks is randomly selected from the original 30. For each subset, calculate the returns. The 
subsequent analysis focuses on two key aspects: Average Return and Sharpe Ratio (SR).
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5.1. Results for out-of-sample mean
Table 7 presents the results for the average excess partial returns for each portfolio strategy examined (The data 
results in the table are also enlarged 1000 times). From the experimental data, the following conclusions can be 
drawn. Comparing with other indicators, it is found that STICV-TVI, STICV(TVUI), and STICV(TVUIUTVI) 
out-of-sample mean is generally better than the other indicators; there is a higher out-of-sample mean, which 
means that asymmetric correlation, individual structure, and time-varying structure are useful, especially when 
combined with the distance correlation matrix. The results indicate that the combination of multiple correlation 
coefficients has a positive effect on increasing the out-of-sample mean of the portfolio.

Table 7. Partial results for out-of-sample Mean

h Method 5IP 10IP 15IP 20IP

20

ICVARF 0.5525 1.0941 0.2929 1.0084

ICVARIF 0.2329 0.5486 0.8669 0.8371

ICVARI 1.1062 1.4118 1.6999 1.1942

LW(lf) 0.3055 0.3999 0.8072 0.2750

LW(id) 0.6875 1.2797 1.0306 1.0051

AST·ASI 1.2186 4.8612 -2.9773 1.9278

ASI 0.4567 0.7216 0.7562 0.5812

NAIVE 0.5990 1.0360 1.0835 0.7189

GMV 0.2256 0.5149 0.9616 -0.0058

STICV(TVUI) -7.9213 1.6049 -3.5750 8.8302

STICV(TVUIUTVI) 2.5275 0.9527 2.2463 0.6912

STICV-TVI 1.6241 -0.3569 8.2101 0.5884

5.2. Results for out-of-sample Sharpe ratio
Table 8 shows the partial results for reports. The average SR of the excess returns for each portfolio strategy 
considered and the data results in the table are also enlarged 1000 times. From the experimental data, the following 
conclusions can be drawn. 

Regardless of the length of the window width and the dimension of the portfolio, STICV (TVUIUTVI) 
outperforms other indicators in terms of Sharpe ratio performance. This shows that the shrinkage method and 
asymmetry used in the model effectively reduce the estimation error and improve the effectiveness of risk 
management. At the same time, adding individual structure and time-varying structure factors to the model more 
accurately captures the correlation and volatility of assets. The combination of these methods also enables the 
portfolio to better balance risk and return. If the results of STICV-TVI, STICV(TVUI), and STICV (TVUIUTVI) 
is compared, it is found that STICV (TVUIUTVI) is better than STICV-TVI and STICV(TVUI).
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Table 8. Partial results for out-of-sample SR

h Method 5IP 10IP 15IP 20IP

20

ICVARF 14.7382 34.3888 0.9208 3.5457

ICVARIF 6.1908 16.5571 2.7435 2.9913

ICVARI 60.3090 97.7646 35.5108 26.4221

LW(lf) 18.0527 17.4015 37.6193 9.9798

LW(id) 34.3661 59.3272 54.3114 41.7454

AST·ASI 38.3274 45.9780 -6.6462 40.3556

ASI 25.7129 46.7267 43.8700 36.2112

NAIVE 29.4312 66.6518 22.2036 15.5550

GMV 12.3570 25.4235 46.9831 -0.2464

STICV(TVUI) -42.1990 26.0394 -39.8212 41.8262

STICV(TVUIUTVI) 80.2958 50.8548 71.4911 29.6349

STICV-TVI 77.6193 -17.6901 54.2835 19.6410

6. Conclusion
This paper investigates the application of asymmetric correlation and its extensions to portfolio selection 
problems. By incorporating both time and individual dimensions of asymmetric correlation, a robust and effective 
asymmetric influence matrix is developed. This matrix is applied within the compressed inverse covariance 
matrix portfolio selection framework to optimize corresponding parameters. The results demonstrate that these 
innovations enhance portfolio performance under the GMV model, offering practical insights for investors.

The proposed portfolio selection strategy is applied to empirical data. Empirical analysis reveals that: (1) 
applying only the time or individual dimension with the standard correlation coefficient matrix is insufficient for 
optimal performance; (2) after adopting the new strategy STICV (TVUIUTVI), achieves a higher out-of-sample 
mean and outperforms traditional approaches in terms of the Sharpe ratio. However, this study also highlights 
challenges. While shrinking the inverse covariance matrix significantly improves portfolio performance, limited 
research exists on shrinking the inverse of asymmetric correlation matrices. This paper uses the generalized inverse 
to address this, but recognizes the need for further exploration into simplifying parameter calculations within 
this framework. Future research should aim to refine covariance matrix shrinking techniques under asymmetric 
influence conditions.
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