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Abstract: The study presents AW-HRNet, a lightweight high-resolution crack segmentation network that couples Adaptive
residual enhancement (AREM) in the spatial domain with Wavelet-based decomposition-reconstruction (WDRM) in the
frequency domain. AREM introduces a learnable channel-wise scaling after standard 3 x 3 convolution and merges it
through a residual path to stabilize crack-sensitive responses while suppressing noise. WDRM performs DWT to decouple
LL/LH/HL/HH sub-bands, conducts lightweight cross-band fusion, and applies IDWT to restore detail-enhanced features,
unifying global topology and boundary sharpness without deformable offsets. Integrated into a high-resolution backbone
with auxiliary deep supervision, AW-HRNet attains 79.07% mloU on CrackSeg9k with only 1.24M parameters and 0.73
GFLOPs, offering an excellent accuracy—efficiency trade-off and strong robustness for real-world deployment.
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1. Introduction

Cracks on road surfaces are among the most visible and direct manifestations of pavement degradation
during service !". Accurately segmenting the spatial distribution and geometric morphology of cracks not only
provides a reliable quantitative basis for pavement condition assessment, maintenance prioritization, and
lifecycle cost control, but also contributes to improved road safety and reduced potential risks . Although
traditional manual inspection methods can achieve a certain level of reliable judgment based on expert
experience, they often suffer from inefficiency and lack of consistency when applied to large-scale road
networks. Moreover, their detection performance is highly susceptible to external factors variations in
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lighting, weather conditions, and image acquisition parameters . Therefore, developing an automated,

scalable, and verifiable crack segmentation framework has become a research topic of both engineering relevance
and scientific significance ',

Prior to the widespread adoption of deep learning, crack detection primarily relied on handcrafted feature
extraction methods combined with traditional machine learning classifiers . Typical approaches involved using
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edge detectors and texture filters to extract statistical features such as Histogram of Oriented Gradients (HOG) or

Local Binary Patterns (LBP). Preliminary segmentation was often performed via thresholding and morphological

operations, followed by classification using models like Support Vector Machines (SVM) or Random Forests .

While these methods could perform reasonably well under controlled imaging conditions with simple

backgrounds, their robustness to shadows, stains, surface material variations, and complex textures was limited,

and their generalization capabilities were weak . Furthermore, they were highly sensitive to hyperparameter
tuning and struggled to capture the thin, curved, and branched topology of cracks, resulting in significant
performance degradation in cross-scene applications "*.

With the advancement of Convolutional Neural Network, crack segmentation has evolved into an end-to-end
pixel-level prediction task, enabling joint optimization of feature extraction and classification, and significantly
enhancing the model’s adaptability to real-world complex road conditions . Encoder-decoder architectures
(e.g., U-Net and its variants) leverage skip connections to combine shallow spatial details with deep semantic
features during decoding, which helps preserve spatial continuity of cracks "”. Multi-scale context aggregation
modules (e.g., Feature Pyramid Networks) have been introduced to improve the representation of cracks with
varying widths and shapes """, In addition, techniques such as channel and spatial attention mechanisms, dense
connections, and deep supervision have further optimized gradient flow and feature reuse, effectively enhancing
crack boundary clarity and topological connectivity . Overall, deep learning-based methods have shown clear
advantages over traditional approaches in maintaining segmentation continuity, improving edge accuracy, and
increasing robustness to environmental variations.

Despite the significant progress, crack segmentation still faces two core challenges.

(1) Conventional convolutions with fixed receptive fields lack adaptability to geometric deformations, making

them ineffective in capturing the thin, curved, and branching nature of cracks "

(2) Although deformable convolutions introduce spatial flexibility, they can suffer from excessive deformation
and offset drift during offset estimation, leading to boundary distortions, topological structure damage,
and training instability "\

To address the first issue of geometric adaptability, the study proposes a robust feature enhancement
convolution module called AREM (Adaptive Residual Enhancement Module). This module introduces a learnable
channel-wise scaling factor following standard convolution operations, combined with a residual enhancement
mechanism. It adaptively calibrates channel responses, strengthens crack-related features, and suppresses noise.
Without sacrificing feature map resolution, this approach significantly improves the stability and noise resistance
of feature representations, enabling a more accurate depiction of complex crack morphologies. To tackle the
second issue of multi-scale feature modeling, the study designs a wavelet-based module called WDRM (Wavelet
Decomposition and Reconstruction Module). This module employs Haar wavelet transforms to decompose feature
maps into low-frequency (LL) and high-frequency (LH, HL, HH) sub-bands. After lightweight convolution
and residual interaction across sub-bands, the inverse wavelet transform reconstructs the enhanced feature map.
This allows unified modeling of low-frequency topological constraints and high-frequency detail enhancement,
effectively mitigating the high-frequency information loss caused by repeated downsampling.

In summary, this paper introduces a segmentation network named AW-HRNet, which integrates the AREM
and WDRM modules into a high-resolution lightweight architecture from two complementary perspectives: robust
feature modeling in the spatial domain and high—low frequency decoupling in the frequency domain. The proposed
network effectively addresses the twin challenges of unstable feature representation and loss of high-frequency
details, offering a practical and efficient solution for accurate crack segmentation.
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2. Literature review

This study primarily focuses on two research directions: the design of lightweight neural networks and crack
segmentation methods. In the following, the study reviews represent progress in both areas and emphasize how
their integration addresses the challenges of real-world deployment and complex scenarios.

2.1. Lightweight neural networks

To meet the demands of edge computing and mobile deployment, lightweight neural networks have emerged
as a key trend in the computer vision community "*, Early representative models include SqueezeNet, which
compresses parameters using the Fire module; the MobileNet series, which decouples spatial filtering and
channel mixing via depthwise separable convolutions to significantly reduce computational cost !'”; ShuffleNet,
which enhances inter-group information exchange through channel shuffling "'”’; and GhostNet, which generates
“ghost features” using cheap linear operations as a low-cost substitute for standard convolutions. These methods
effectively control model size and inference latency while maintaining accuracy.

In recent years, specialized lightweight strategies for low-level and structured vision tasks have emerged. For
example, LSNet draws inspiration from the human visual system and proposes a hybrid paradigm of “large kernel
perception + small kernel aggregation”: global context is captured using large kernel depthwise convolutions,
while fine-grained local features are fused using small kernels to achieve a better accuracy—efficiency trade-off.
Another line of research is represented by SCSegamba, which builds a lightweight structure-aware network based
on state-space models (SSM) and the Mamba architecture. This approach compresses parameters using low-rank
decomposition and dynamic gated bottleneck convolutions, while leveraging structure-aware state-space modules
to model topological relationships between pixels, thus enhancing semantic continuity. DSAN, on the other hand,
combines deformable convolutions with spatial attention, proposing DSCN (Deformable Strip Convolution with
Single-Axis Constraint). By limiting offsets to a single axis and using linear interpolation without modulation
masks, it maintains geometric flexibility while further reducing parameter count and computational overhead.

2.2. Crack segmentation methods

As a critical task in road defect detection and infrastructure health monitoring, crack segmentation has evolved
from traditional image processing methods to end-to-end deep learning frameworks '*. Early methods relied on
edge or texture operators (e.g., Canny, Sobel, Gabor) to extract statistical features such as HOG and LBP, followed
by thresholding and morphological processing. Classification was then performed using models such as SVMs
or Random Forests. These methods performed reasonably well under controlled imaging conditions and simple
backgrounds, but were highly sensitive to lighting changes, shadows, material variations, and complex textures,
leading to poor generalization performance.

With the advancement of deep learning, crack segmentation has entered a new stage of joint optimization
for accuracy and efficiency. On one hand, encoder—decoder architectures (e.g., U-Net and its variants) utilize skip
connections to reintegrate fine details during upsampling, improving boundary and fine-structure preservation.
On the other hand, multi-scale context modeling enhances adaptability to cracks of various scales and complex
backgrounds. Additionally, techniques such as channel/spatial attention, dense connections, and deep supervision
contribute to optimizing gradient flow and connectivity representation. Recent research has advanced along two
parallel directions, lightweight design and feature modeling, to meet the demand for efficient and deployable
solutions. For instance, HMBCNet achieves lightweight modeling through the decoupling of downsampling,
the multi-branch dilation, and the cascade fusion strategy. DFPA-Net employs dual-level partial convolutions
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and multi-scale feature attention, showcasing extreme lightweight potential in targeted scenarios. Meanwhile,
CrackdiffNet introduces a novel generative prior based on diffusion models, which maps segmentation masks to

synthetic images and incorporates skeleton-based features to estimate crack width.

3. Methodology

3.1. Overall network architecture
AW-HRNet follows a dual-branch encoder—multi-scale enhancement—progressive decoder paradigm, designed
to preserve high-resolution features while effectively integrating global semantics with fine-grained crack details
(Figure 1). The input is first passed through shallow convolution and normalization layers to obtain features at
a unified scale.In the dual-branch encoder, the high-resolution path stacks multiple AREM modules to enhance
feature stability and robustness through residual convolution and channel-wise scaling mechanisms. Meanwhile,
the low-resolution path expands the receptive field via downsampling to aggregate global context, and interacts
with the high-resolution branch to supplement semantic information ", To further mitigate detail loss caused by
downsampling, the high-resolution branch is followed by the WDRM module. This module first applies a Discrete
Wavelet Transform (DWT) to decompose the features into LL, LH, HL, and HH sub-bands, enabling frequency-
domain modeling of low-frequency topological constraints and high-frequency detail capture. Then, lightweight
convolution and residual enhancement are applied to perform cross-subband information interaction, which is then
followed by an Inverse DWT (IDWT) to reconstruct the features back to the original scale, thereby achieving a
unified representation of low- and high-frequency information.

In the decoder stage, a lightweight segmentation head serves as the main output branch, complemented by
two auxiliary heads for deep supervision. The final predictions are upsampled to the input resolution using bilinear
interpolation, and a 1x1 convolution maps the features to a pixel-wise crack probability map, which can be jointly

optimized with the task-specific loss function .
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Figure 1. Overall Architecture of AW-HRNet.

In summary, AW-HRNet enhances the classical high-resolution framework in both the spatial and frequency
domains: the AREM module improves the robustness and stability of spatial features, while the WDRM module
leverages explicit DWT/IDWT transformations to decompose and reconstruct high- and low-frequency sub-bands,
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thereby enabling implicit multi-scale feature enhancement. Working in synergy, these two modules allow the
network to simultaneously model global topology and capture fine-grained crack structures without introducing
explicit deformable offsets. As a result, the network achieves a better trade-off between accuracy and efficiency,

along with greater robustness in complex scenarios.

3.2. Adaptive residual enhancement module

In complex environments, cracks are often affected by noise, and their edge details can easily become confused
with background textures, which frequently leads to instability in local feature representation *". Traditional
convolution operations, with fixed kernel weights, lack the ability to adaptively adjust channel responses, often
resulting in feature bias and weakened details, thereby compromising the modeling of crack continuity. To address
this, the study proposes a robust feature enhancement module called AREM (Adaptive Residual Enhancement
Module). This module jointly models residual convolution and learnable scaling factors to effectively improve the
robustness and adaptability of feature extraction (Figure 2).

Input - @—» Output

L BN Scale(y)

Figure 2. Structure of the AREM Module.

More specifically, the AREM module consists of convolution, batch normalization, and nonlinear activation
layers, with a learnable channel-wise scaling factor introduced at the end to enable adaptive feature modulation. A
residual connection fuses the enhanced features with the input features, which not only facilitates stable gradient
propagation but also enhances feature robustness, all without changing the spatial resolution or the number of
channels in the backbone . The _ScaleModule, which introduces the learnable channel-wise scaling factors, T
is designed to amplify crack-sensitive channels while suppressing noise-sensitive ones, thereby mitigating detail
attenuation and feature bias caused by fixed sampling patterns. AREM is deployed along the high-resolution path
of the backbone network, aiming to stabilize feature representations after multi-scale interactions. In collaboration
with the frequency-domain WDRM module, AREM provides fine-grained and robust enhancement in the spatial
domain, allowing the network to achieve more stable crack representations and better generalization—without
introducing explicit deformable offsets.

F(X)=ReLU(BN(Conv,,, (X))) (1)
U=Te F(X) )
Y=X+U 3)

11 Volume 9, Issue 6



Let © denote the standard element-wise multiplication. Accordingly, the branch feature is defined as . Given
the input feature , a channel-wise scaling factor is introduced in parallel and applied for feature re-scaling. This
mechanism enhances crack-sensitive channels while suppressing noise-sensitive ones, thereby mitigating feature

degradation caused by fixed sampling. The final output is expressed as .

3.3. Wavelet decomposition and reconstruction module

Cracks often exhibit irregular, slender, and branched shapes, and frequently share high visual similarity with
background textures. This results in significant differences in the representation of high-frequency details and low-
frequency structures. Traditional convolutional networks rely on fixed sampling positions for feature modeling.
After multiple downsampling stages, they tend to suffer from blurred high-frequency edges and insufficient
global low-frequency structure, ultimately leading to broken crack contours and topological discontinuities. To
address these issues, the study proposes the Wavelet Decomposition and Reconstruction Module (WDRM), which
decouples and reintegrates high- and low-frequency information via Discrete Wavelet Transform (DWT) and

Inverse DWT (IDWT), thereby enhancing the network’s multi-scale feature representation capability (Figure 3).
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Figure 3. Structure of the WDRM Module.

Specifically, the input feature is first decomposed using fixed wavelet filters through DWT, producing four
sub-bands: LL, LH, HL, and HH. The LL sub-band retains the overall structural information, while the three
high-frequency sub-bands (LH, HL, and HH) capture boundary and texture details in different orientations. The
four sub-bands are concatenated along the channel dimension and passed through a 1 x 1 convolution for feature
compression and fusion. This is followed by a convolutional enhancement step to improve semantic consistency
and robustness. After enhancement, the fused feature map is restored to the original resolution via a fixed IDWT,

and then added to the input branch via residual connection, enabling feature reconstruction and enhancement.
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Figure 4. Structure of the AWBIcok.

Within the overall network, the LL sub-band in WDRM provides constraints on global connectivity, while the
high-frequency sub-bands enhance boundary and texture representation. This effectively mitigates edge blurring
and topological fragmentation caused by repeated downsampling. Ultimately, WDRM serves as a bridge between
the spatial and frequency domains, complementing spatial-domain enhancement modules such as AREM. This
integration allows the model to maintain high-resolution feature representations while simultaneously enhancing
noise robustness and boundary precision, thereby significantly improving the overall accuracy and generalization
capability in crack segmentation tasks (Figure 4).

4. Experiments
4.1. Datasets

To evaluate the effectiveness of the proposed model, the study adopts the CrackSeg9k dataset as the experimental
benchmark . CrackSeg9k is a medium-scale semantic segmentation dataset specifically constructed for crack
detection and segmentation tasks. It contains approximately 8,751 high-quality crack images, covering surfaces of
various materials such as concrete, ceramic, and brick, with a unified resolution of 400x400 pixels. The dataset is
divided into two categories: crack and background. Under a fixed random seed, the images are split into training,
validation, and test sets in a ratio of 7:1:2.

4.2. Experimental settings

All experiments are conducted on the CrackSeg9k dataset, with input image size fixed at 400 x 400. The training
batch size is set to 56, and the total number of iterations is 100k. The study uses the SGD optimizer with a momentum
of 0.9 and a weight decay of 5 x 10", The initial learning rate is 0.01, which is decayed following the Polynomial
Decay strategy with a power of 0.9, until reaching 0. In addition, a warm-up phase is applied during the first 2,000
iterations, starting from a learning rate of 1 x 10°. During validation, only normalization is applied. The OHEM
Cross-Entropy Loss is used as the loss function, with the coefficient of the main branch set to 1.0, and the two
auxiliary supervision branches both set to 0.5, in order to mitigate class imbalance and enhance training stability.

4.3. Evaluation Metrics

To comprehensively assess the performance of segmentation models with varying depths, the study employs
four evaluation metrics: Precision (Pr), Recall (Re), F1-score, and mean Intersection-over-Union (mloU). The
definitions are as follows:
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Pr=
TP +FP “4)
Re= TP
TP+ FN (5)
Fl=2. Pr-Re
Pr+Re (6)
mloU = mean [L)
TP+ FP+ FN (7)

True Positive (TP) refers to pixels correctly identified as cracks, while False Positive (FP) denotes background
pixels that are incorrectly classified as cracks. False Negative (FN) corresponds to crack pixels that are mistakenly
predicted as background. The computational cost and model size are evaluated using two indicators: the number of
floating-point operations (GFLOPs) and the number of parameters (Params).

4.4. Comparison with State-of-the-Art Models
This study focuses on designing a lightweight crack segmentation model and compares the proposed AW-HRNet
with several representative methods (Table 1). Overall, classical networks such as UNet and PSPNet achieve high
segmentation accuracy. For instance, UNet reaches an mloU of 79.15%, but at the cost of 13.40M parameters and
75.87 GFLOPs. PSPNet similarly requires 21.07M parameters and 54.20 GFLOPs, making deployment costly
in resource-constrained scenarios. In terms of lightweight architectures, BiSeNetv2 and DDRNet demonstrate
advantages in inference efficiency, yet their accuracies remain insufficient, with mloUs of 75.09% and 76.77%,
respectively. HrSegNet-B16 achieves the best efficiency, requiring only 0.61M parameters and 0.66 GFLOPs,
while delivering an mloU of 78.02% and the highest ACC of 98.54%, highlighting its superior lightweight design.
By comparison, AW-HRNet delivers an mloU of 79.07% and an F1 score of 87.00%, with only a slight increase in
complexity, representing a 1.05% improvement over HrSegNet-B16. Compared with UNet, AW-HRNet achieves
nearly equivalent accuracy while requiring only about 1/11 of the parameters and 1/100 of the computational cost,
clearly demonstrating its excellent accuracy—efficiency balance.

In summary, AW-HRNet achieves segmentation performance comparable to heavyweight models while
maintaining extremely low computational cost, and shows consistent improvements over other lightweight

methods, underscoring its strong potential for deployment in resource-constrained scenarios.

Table 1. Comparisons with state-of-the-art on CrackSeg9k.

Model mloU (%) F1 (%) ACC (%) Params(M) GFLOPs
UNet % 79.15 87.21 98.50 13.40 75.87
PSPNet 76.78 85.39 98.14 21.07 54.20
BiSeNetv2 75.09 83.71 98.16 2.33 4.93
DDRNet > 76.77 85.45 98.40 20.18 11.11
HrSegNet-B16 7 78.02 86.18 98.54 0.61 0.66
AW-HRNet 79.07 87.00 98.41 1.24 0.73
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4.5. Ablation study
To investigate the contribution of each module, the study conducts ablation experiments on the CrackSeg9k dataset
using HrSegNet-B16 as the baseline, and progressively introduces AREM and WDRM (Table 2).

Table 2. Ablation study on CrackSeg9k (baseline: HrSegNet-B16)

Method mloU (%) Params (M) GFLOPs
HrSegNet-B16 78.02 0.61 0.66
+ AREM 78.64 0.72 0.72
+ WDRM 78.89 0.91 0.78
AW-HRNet 79.07 1.24 0.73

Introducing AREM on the HrSegNet-B16 baseline increases mloU from 78.02% — 78.64% (+0.62 pp) with
only +0.11M parameters and +0.06 GFLOPs. Adding WDRM further raises mloU to 78.89% (+0.87 pp over
baseline) with a modest footprint of 0.91M params and 0.78 GFLOPs. When both modules are combined in AW-
HRNet, mloU reaches 79.07% (+1.05 pp over baseline) while computation and model size remain low (1.24M,
0.73 GFLOPs). In summary, AREM strengthens spatial robustness via residual reinforcement and channel-wise
scaling, whereas WDRM restores high-frequency details through wavelet decomposition—reconstruction; the two

are complementary and jointly improve segmentation accuracy and stability.

5. Conclusion

In this work, the study addressed the challenges of fine-grained feature loss, boundary blurring, and insufficient
lightweight design in crack segmentation by proposing AW-HRNet, a lightweight network built upon a high-
resolution framework. Methodologically, the AREM module was introduced to enhance the stability and
robustness of feature representation through residual convolution and channel-wise scaling, while the WDRM
module was designed to explicitly model high- and low-frequency information in the frequency domain via
wavelet decomposition and reconstruction. This enables the preservation of low-frequency topological integrity
while strengthening crack boundaries and texture details. Working synergistically, the two modules allow the
network to achieve an excellent balance between accuracy and efficiency, while extensive experiments across
multiple datasets validated their effectiveness and robustness.

For future work, the study plans to explore the integration of learnable wavelet bases with Transformer
architectures to further improve cross-scene generalization capability. In addition, the study aims to extend the
proposed network to more complex engineering infrastructure scenarios, such as bridges, tunnels, and airport

runways, thereby advancing the practical application of intelligent crack monitoring and maintenance.
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